Abstract

An axial-resolution-enhanced two-photon laser scanning microscopy system is presented in this paper. In the proposed method, we use a spatial light modulator (SLM) for the phase modulation of the excitation light. The axially split point spread function (PSF) is generated by loading a 0-π pattern on the SLM. The final quality-enhanced images are acquired by subtracting the two consecutive images acquired by the original PSF and the split PSF. Because of the fluorescence differential processing, the axial elongation of the particles images is suppressed, and the axial resolution is enhanced accordingly. With the axial resolution enhanced, the overlap between layer images is also reduced, which decreases the background noise of the images and enhances the contrast and image quality of the acquired fluorescence images. The capability of axial resolution and contrast enhancement is successfully demonstrated by both theoretical calculation and experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.