Abstract

The use of self-inducible promoters is a promising strategy to address metabolic imbalances caused by overexpression. However, the low activity of natural self-inducible promoters hinders their widespread application. To overcome this limitation, we selected the fic promoter as a model promoter to create an enhanced self-inducible promoter library using saturation mutations and high-throughput screening. Sequence analysis revealed that these promoters share certain characteristics, including semi-conservation in the −35 hexamer, highly conserved cytosine in the −17 motif (compared to −13 for other promoters), and moderate A+T content between positions −33 and −18 in the spacer region. Additionally, the discriminator region of these promotors features high A+T content in the first five bases. We identified PficI-17, PficII-33, and PficIII-14 promoters as the optional promoters in the −35 hexamer, spacer region, and discriminator mutation libraries, respectively. These promotors were used as representatives to measure the specific fluorescence and OD600 nm dynamics in different media and to confirm their effect on the expression of different proteins, including egfp (enhanced green fluorescence protein) and rfp (red fluorescence protein). Overall, our findings provide valuable guidance for modifying promoters and developing a promoter library suitable for regulating target genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.