Abstract

Along mountain roads, rainfall-triggered landslides are typical disasters that cause significant human casualties. Thus, to establish effective mitigation measures, it would be very useful were government agencies and practicing land-use planners to have the capability to make an accurate landslide evaluation. Here, we propose a machine learning methodology for the spatial prediction of rainfall-induced landslides along mountain roads which is based on a random forest classifier (RFC) and a GIS-based dataset. The RFC is used as a supervised learning technique to generalize the classification boundary that separates the input information of ten landslide conditioning factors (slope, aspect, relief amplitude, toposhape, topographic wetness index, distance to roads, distance to rivers, lithology, distance to faults, and rainfall) into two distinctive class labels: ‘landslide’ and ‘non-landslide’. Experimental results with a cross validation process and sensitivity analysis on the RFC model parameters reveal that the proposed model achieves a superior prediction accuracy with an area under the curve of 0.92. The RFC significantly outperforms other benchmarking methods, including discriminant analysis, logistic regression, artificial neural networks, relevance vector machines, and support vector machines. Based on our experimental outcome and comparative analysis, we strongly recommend the RFC as a very capable tool for spatial modeling of rainfall-induced landslides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.