Abstract

Weak subdivision or fragmentation ability of deformed {100} (<100> // ND, normal direction) grains by traditional unidirectional (symmetric) rolling results in uneven deformation during tantalum (Ta) processing. Thus, a recently developed asymmetric cross rolling (ACR) is adopted in this work to enhance the subdivision of {100} grain in Ta sheets. Electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and Vickers hardness (HV) were used for the characterisation of microstructure in deformed {100} grains. It is shown that added shear strain component in the ACR leads to heterogeneous deformation substructures within {100} grains. The increase of speed ratio in ACR further enhances the subdivision of deformed {100} grains and thus increases the density of geometrically necessary dislocations (GNDs) in them. The computation of the largest Schmid factor (SFrolling) along with Taylor model suggests that the ACR promotes easier slip within deformed {100} grains. Therefore, the necessary total shear strain contributing to the increase of GNDs density is small. By contrast, the shear strain accumulated after CR-1.0 is distributed more evenly in each slip system resulting in rather sparse distribution of dislocation lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.