Abstract

Recently, there has been a surge in the use of generated data to enhance the performance of downstream models, largely due to the advancements in pre-trained language models. However, most prevailing methods trained generative and discriminative models in isolation, which left them unable to adapt to changes in each other. These approaches lead to generative models that are prone to deviating from the true data distribution and providing limited benefits to discriminative models. While some works have proposed jointly training generative and discriminative language models, their methods remain challenging due to the non-differentiable nature of discrete data. To overcome these issues, we introduce a self-consistent learning framework in the text field that involves training a discriminator and generator cooperatively in a closed-loop manner until a scoring consensus is reached. By learning directly from selected samples, our framework are able to mitigate training instabilities such as mode collapse and non-convergence. Extensive experiments on four downstream benchmarks, including AFQMC, CHIP-STS, QQP, and MRPC, demonstrate the efficacy of the proposed framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.