Abstract

A robust collaborative system of active products (a product is called active when its ownership does not get transferred from provider to requestor at the time of its usage) should have an in-built mechanism which can make entities (service provider(s) and requestor(s)) to decide with whom to collaborate. In the absence of such a mechanism, the system is bound to have high job failure rate, resulting in wastage of resources. This paper proposes a Trust based Multi-Agent Framework (TbMAF) for collaborative systems of active products which enable only trustworthy entities to collaborate, safeguarding both users’ sensitive applications and providers’ resources. The trustworthiness of service provider(s) and requestor(s) is computed using Fuzzy Inference System (FIS) and Radial Basis Function Neural Network (RBFNN) methodologies, respectively. A prototype based on the proposed system has been tested using real time data of a collaborative system namely, EGEE (Enabling Grids for E-science). This paper finds evidence that the job failure rate is lower when collaborations take place only between trustworthy entities. Further, the proposed framework is found to be robust against malicious entities and can capture the evolving behavior of entities as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.