Abstract
Vegetation growth in Soil and Water Assessment Tool (SWAT) is a crucial process for quantifying ecohydrological modelling, as it influences evapotranspiration, interception, soil erosion and biomass production. The simplified version of Environmental Policy Integrated Climate (EPIC) in SWAT was originally designed for temperate regions and naturally based on temperature to simulate growth cycles of vegetation. However, tropical or subtropical vegetation growth is mainly controlled by rainfall. Due to this limitation, current SWAT simulations in tropics and subtropics have been facing a series of problems on vegetation dormancy, water balance and sediment yield. Therefore, we proposed an approach to enhance the modelling of SWAT vegetation dynamics with remotely sensed leaf area index (LAI), to finally increase the applicability of SWAT in tropical or subtropical areas. Spatially and temporally continuous LAI products (1 day, 500 m) from Moderate Resolution Imaging Spectroradiometer (MODIS) observations were integrated into SWAT to replace the LAI simulated by built-in EPIC module. Two advanced filter algorithms were employed to derive a downscaled LAI (30 m) to keep a consistent spatial scale with the size of Hydrological Response Units (HRU) and open data (i.e. SRTM, 30 m), and the source code of the plant growth module were correspondingly modified to incorporate the downscaled LAI into SWAT. To examine the performance of our proposed approach, a case study was conducted in a representative middle-scale (6384 km2) subtropical watershed of Meichuan basin, China, and detailed analysis was performed to investigate its ecohydrological effects, such as streamflow, sediment yield and LAI dynamics from 2001 to 2014. Model performances were compared among three scenarios: (1) original SWAT, (2) SWAT with a corrected plant dormancy function, and (3) modified SWAT after integration of MODIS LAI (our proposed method). Results showed that the modified SWAT took advantage of downscaled MODIS LAI and produced more reasonable seasonal curves of vegetation cover factor (C) of plants than the original model. Correspondingly, the modified SWAT substantially improved streamflow and sediment simulations. The findings demonstrated that SWAT model can be a useful tool for simulating ecohydrological process for subtropical ecosystems when integrated with our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.