Abstract
(1) Background: Advanced-stage lung cancer poses significant management challenges. The goal of this study was to identify crucial clinical and PET radiomics features that enable prognostic stratification for predicting outcomes. (2) Methods: PET radiomics features of the primary lung lesions were extracted from 99 patients with stage IVB NSCLC, and the robustness of these PET radiomics features was evaluated against uncertainties stemming from extraction parameters and contour variation. We trained three survival risk models (clinical, radiomics, and a composite) through a penalized Cox model framework. We also created a Balanced Random Forest classification predictive model, using the selected features, to predict 1-year survival. (3) Results: We identified 367 common PET radiomics features that exhibited robustness to perturbations introduced by contour variation and extraction parameters. Our findings indicated that both the radiomics and the composite model outperformed the clinical model in stratifying the risk for survival with statistical significance. In predicting 1-year survival, the radiomics model and the composite model also achieved better predicting accuracies compared to the clinical model. (4) Conclusions: Robust PET radiomics analysis successfully facilitated the stratification of patient risk for survival outcomes and predicted 1-year survival in stage IVB NSCLC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.