Abstract

In this paper, we present a new novel simple iTFET with overlapping gate on source-contact (SGO), Drain Schottky Contact, and intrinsic SiGe pocket (Pocket-SGO iTFET). The aim is to achieve steep subthreshold swing (S.S) and high ION current. By optimizing the gate and source-contact overlap, the tunneling efficiency is significantly enhanced, while the ambipolar effect is suppressed. Additionally, using a Schottky contact at the drain/source, instead of ion implantation drain/source, reduces leakage current and thermal budget. Moreover, the tunneling region is replaced by an intrinsic SiGe pocket posing a narrower bandgap, which increases the probability of band-to-band tunneling and enhances the ION current. Our simulations are based on the feasibility of the actual process, thorough Sentaurus TCAD simulations demonstrate that the Pocket-SGO iTFET exhibits an average and minimum subthreshold swing of S.Savg = 16.2 mV/Dec and S.Smin = 4.62 mV/Dec, respectively. At VD = 0.2 V, the ION current is 1.81 times 10–6 A/μm, and the ION/IOFF ratio is 1.34 times 109. The Pocket-SGO iTFET design shows great potential for ultra-low-power devices that are required for the Internet of Things (IoT) and AI applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.