Abstract

Natural products are an unsurpassed source of leading structures in drug discovery. The biosynthetic machinery of the producing organism offers an important source for modifying complex natural products, leading to analogs that are unattainable by chemical semisynthesis or total synthesis. In this report, through the combination of natural products chemistry and diversity-oriented synthesis, a diversity-enhanced extracts approach is proposed using chemical reactions that remodel molecular scaffolds directly on extracts of natural resources. This method was applied to subextract enriched in sesquiterpene lactones from Ambrosia tenuifolia (Fam. Asteraceae) using acid media conditions (p-toluenesulfonic acid) to change molecular skeletons. The chemically modified extract was then fractionated by a bioguided approach to obtain the pure compounds responsible for the anti-glioblastoma (GBM) activity in T98G cell cultures. Indeed, with the best candidate, chronobiological experiments were performed to evaluate temporal susceptibility to the treatment on GBM cell cultures to define the best time to apply the therapy. Finally, bioinformatics tools were used to supply qualitative and quantitative information on the physicochemical properties, chemical space, and structural similarity of the compound library obtained. As a result, natural products derivatives containing new molecular skeletons were obtained, with possible applications as chemotherapeutic agents against human GBM T98G cell cultures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.