Abstract
Proteins are subjected to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological functions. Methionine as a sulfur-containing amino acid is easily oxidized to methionine sulfoxide (MetSO). The modified methionine can be repaired by methionine sulfoxide reductase (Msr), an enzyme that reverses oxidation of methionine in proteins. In this study, a methionine sulfoxide reductase A (PoMsrA) gene from Pleurotus ostreatus was cloned and characterized. Furthermore, the function of PoMsrA gene was analyzed by overexpression in P. ostreatus via Agrobacterium-mediated transformation. Stable integration of the target gene into the genome of P. ostreatus was confirmed by PCR, fluorescence observation, and Southern blot hybridization. qRT-PCR analysis showed that PoMsrA was highly expressed in the stage of mature and young fruiting bodies as well as the osmotic stress condition of 0.3 M NaCl. Additionally, the transgenic strains with PoMsrA overexpression exhibited an enhanced tolerance to high temperature, high osmotic stress, and oxidative stress. This suggests that PoMsrA is an active player in the protection of the cellular proteins from oxidative stress damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.