Abstract
Two-dimensional (2D) transition metal chalcogenides (TMCs) are known to be susceptible to the atmosphere, which greatly obscures the intrinsic physical and chemical properties. The quantitative origin of the instability on the atomic scale has not been well investigated due to the lack of environmentally stable TMCs sample. Here, we find the stability of the grown TMCs is strongly relevant to their initial element ratios, and thus the stoichiometric bonded TMCs have favorable stability, benefitted from the TMCs with controllable chalcogenisation. In this study, the degree of structural degradation has been quantitatively defined by the reduced element ratio of chalcogen to metal through the time-dependent characterizations, and the non-stoichiometric ratios in TMCs reveal the atomic lattices with point defects like additive bonds or vacancies inside. This study not only provides a potential view to fabricate environmentally stable TMCs based devices, but also will bring an effective feasibility of stacking stable vertical heterostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.