Abstract

AbstractTo expedite the commercialization of perovskite solar cells (PSCs), researchers are exploring the feasibility of employing nickel phthalocyanine (NiPc) as a hole transport material (HTM) due to its cost‐effectiveness, excellent thermal stability, and suitability for solution coating. However, the low LUMO energy level of the NiPc may limit its ability to block photoelectrons generated in the perovskite layer from recombining with holes, which can reduce the overall efficiency of the solar cell. One solution is to use cascaded bilayers with HTMs that have relatively higher LUMO levels. In this study, a bilayer consisting of NiPc and poly(3‐hexylthiophene) (P3HT) is employed as the HTM, where the P3HT exhibits vertical phase separation during the coating process. By optimizing the mixing amount of P3HT into the NiPc, a record power conversion efficiency of 23.11%, the highest reported for NiPc‐based PSCs is achieved. Moreover, an excellent long‐term stability is demonstrated by encapsulating the PSC in polyisobutylene, with the device retaining 90% of its initial efficiency after exposure to 85 °C and 85% relative humidity for 1000 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.