Abstract
Inverted inorganic perovskite solar cells (PSCs) is potential as the top cells in tandem configurations, owing to the ideal bandgap, good thermal and light stability of inorganic perovskites. However, challenges such as mismatch of energy levels between charge transport layer and perovskite, significant non-radiative recombination caused by surface defects, and poor water stability have led to the urgent need for further improvement in the performance of inverted inorganic PSCs. Herein, the fabrication of efficient and stable CsPbI3-x Brx PSCs through surface treatment of (3-mercaptopropyl) trimethoxysilane (MPTS), is reported. The silane groups in MPTS can in situ crosslink in the presence of moisture to build a 3-dimensional (3D) network by Si-O-Si bonds, which forms a hydrophobic layer on perovskite surface to inhibit water invasion. Additionally, -SH can strongly interact with the undercoordinated Pb2+ at the perovskite surface, effectively minimizing interfacial charge recombination. Consequently, the efficiency of the inverted inorganic PSCs improves dramatically from 19.0% to 21.0% under 100mW cm-2 illumination with MPTS treatment. Remarkably, perovskite films with crosslinked MPTS exhibit superior stability when soaking in water. The optimized PSC maintains 91% of its initial efficiency after aging 1000 h in ambient atmosphere, and 86% in 800 h of operational stability testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.