Abstract

The utilization of the spectrum is optimized through which primary users of modern wireless communication technologies might obtain a higher chance of detection. The research aims to study how the NI-USRP hardware platform can be used to set up greedy cooperative spectrum sensing for cognitive radio networks. Research primarily deals with energy detection and eigenvalue-based detection approaches, both of which are highly recognized for their capacity to sense the spectrum without having prior knowledge of the primary user signals. In the hardware arrangement, there is one transmitter and two cognitive radio receivers. LABVIEW makes it simple to deploy and maximizes the detection probability across a large sample. Here, it was demonstrated that cooperative spectrum sensing is superior to non-cooperative spectrum sensing, which results in a reduction in the risk of errors occurring during detection. The research discovered that the OR combination rule has a higher detection probability than the AND rule at the same time. The research emphasizes the significance of expanding cooperative spectrum sensing to improve overall detection capabilities. SNRs that are more than 10 dB allow the energy detector to operate, and the eigenvalue detector continues to work when the SNR drops to –9 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call