Abstract
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained l1 minimization. In this paper, we study a novel method for sparse signal recovery that in many situations outperforms l1 minimization in the sense that substantially fewer measurements are needed for exact recovery. The algorithm consists of solving a sequence of weighted l1-minimization problems where the weights used for the next iteration are computed from the value of the current solution. We present a series of experiments demonstrating the remarkable performance and broad applicability of this algorithm in the areas of sparse signal recovery, statistical estimation, error correction and image processing. Interestingly, superior gains are also achieved when our method is applied to recover signals with assumed near-sparsity in overcomplete representations—not by reweighting the l1 norm of the coefficient sequence as is common, but by reweighting the l1 norm of the transformed object. An immediate consequence is the possibility of highly efficient data acquisition protocols by improving on a technique known as Compressive Sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.