Abstract

Over the past three decades, many software reliability models with different parameters, reflecting various testing characteristics, have been proposed for estimating the reliability growth of software products. We have noticed that one of the most important parameters controlling software reliability growth is the fault reduction factor (FRF) proposed by Musa. FRF is generally defined as the ratio of net fault reduction to failures experienced. During the software testing process, FRF could be influenced by many environmental factors, such as imperfect debugging, debugging time lag, etc. Thus, in this paper, we first analyze some real data to observe the trends of FRF, and consider FRF to be a time-variable function. We further study how to integrate time-variable FRF into software reliability growth modeling. Some experimental results show that the proposed models can improve the accuracy of software reliability estimation. Finally, sensitivity analyses of various optimal release times based on cost and reliability requirements are discussed. The analytic results indicate that adjusting the value of FRF may affect the release time as well as the development cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.