Abstract

Object-oriented software (OOS) is dominating the software development world today and thus, has to be of high quality and maintainable. However, their recent size and complexity affects the delivering of software products with high quality as well as their maintenance. In the perspective of software maintenance, software change impact analysis (SCIA) is used to avoid performing change in the “dark”. Unfortunately, OOS classes are not without faults and the existing SCIA techniques only predict impact set. The intuition is that, if a class is faulty and change is implemented on it, it will increase the risk of software failure. To balance these, maintenance should incorporate both impact and fault-proneness (FP) predictions. Therefore, this paper propose an extended approach of SCIA that incorporates both activities. The goal is to provide important information that can be used to focus verification and validation efforts on the high risk classes that would probably cause severe failures when changes are made. This will in turn increase maintenance, testing efficiency and preserve software quality. This study constructed a prediction model using software metrics and faults data from NASA data set in the public domain. The results obtained were analyzed and presented. Additionally, a tool called Class Change Recommender (CCRecommender) was developed to assist software engineers compute the risks associated with making change to any OOS class in the impact set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call