Abstract
This study investigates the feasibility and effectiveness of integrating Attribute-Based Encryption (ABE) into smart healthcare networks, with a particular focus on its role in enhancing anti-corruption mechanisms. The study provides a comprehensive analysis of current vulnerabilities in these networks, identifying potential data security risks. An anti-corruption mechanism is designed to ensure data integrity and reliability. The ABE approach is then empirically compared to other prominent encryption algorithms, such as Identity-Based Encryption, Data Encryption Standard, Advanced Encryption Standard, and Rivest-Shamir-Adleman algorithms. These methods are evaluated based on access latency, data transmission speed, system stability, and anti-corruption capabilities. Experimental results highlight the strengths of the ABE algorithm, demonstrating an average access latency of 31.6 milliseconds, a data transmission speed of 3.56 MB/s, and an average system stability of 98.74%. Furthermore, when integrated into anti-corruption mechanisms, ABE effectively protects against data tampering and misuse, ensuring secure data transmission. Compared to alternative algorithms, ABE offers a more efficient, secure, and stable solution for data management within smart healthcare networks, supported by its robust anti-corruption capabilities. This positions ABE as an optimal choice for safeguarding the integrity and security of healthcare data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.