Abstract

The sequential recommendation systems capture users' dynamic behavior patterns to predict their next interaction behaviors. Most existing sequential recommendation methods only exploit the local context information of an individual interaction sequence and learn model parameters solely based on the item prediction loss. Thus, they usually fail to learn appropriate sequence representations. This paper proposes a novel recommendation framework, namely Graph Contrastive Learning for Sequential Recommendation (GCL4SR). Specifically, GCL4SR employs a Weighted Item Transition Graph (WITG), built based on interaction sequences of all users, to provide global context information for each interaction and weaken the noise information in the sequence data. Moreover, GCL4SR uses subgraphs of WITG to augment the representation of each interaction sequence. Two auxiliary learning objectives have also been proposed to maximize the consistency between augmented representations induced by the same interaction sequence on WITG, and minimize the difference between the representations augmented by the global context on WITG and the local representation of the original sequence. Extensive experiments on real-world datasets demonstrate that GCL4SR consistently outperforms state-of-the-art sequential recommendation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.