Abstract
For many years, discrete gate sizing has been widely used for timing and power optimization in VLSI designs. The importance of gate sizing optimization has been emphasized by academia for many years, especially since the 2012/2013 ISPD gate sizing contests [1, 2]. These contests have provided practical impetus to academic sizers through the use of realistic constraints and benchmark formats. At the same time, due to simplified delay/power Liberty models and timing constraints, the contests fail to address real-world criteria for gate sizing that are highly challenging in practice. We observe that lack of consideration of practical issues such as electrical and multi-corner constraints – along with limited sets of benchmarks – can misguide the development of contest-focused academic sizers. Thus, we study implications of the “gap” between academic sizers and product design use cases. In this paper, we note important constraints of modern industrial designs that are generally not comprehended by academic sizers. We also point out that various optimization techniques used in academic sizers can fail to offer benefits in product design contexts due to differences in the underlying optimization formulation and constraints. To address this gap, we develop a new robust academic sizer, Sizer, from a fresh implementation of Trident [3]. Experimental results show that Sizer is able to achieve up to 10% leakage power and 4% total power reductions compared to leading commercial tools on designs implemented with foundry technologies, and 7% leakage power reduction on a modern industrial design in the multi-corner multi-mode (MCMM) context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.