Abstract

The availability of multimedia information has been increased dramatically with the advent of video broadcasting on handheld devices. But with this availability comes problems of maintaining the security of information that is displayed in public. ISMA Encryption and Authentication (ISMACryp) is technologies for video content protection in DVB-H (Digital Video Broadcasting- Handheld), the TV system for portable handheld devices. The ISMACryp is encoded with H.264/AVC (advanced video coding), while leaving all structural data as it is. Two modes of ISMACryp are available; the CTR mode (Counter type) and CBC mode (Cipher Block Chaining) mode. Both modes of ISMACryp are based on 128-bit AES algorithm. This paper deals with AES-CTR mode. AES algorithms are more complex and require larger time for execution which is not suitable for real time application like Live TV, Video chatting or Video conferencing on handheld device. The proposed system aims to gain a deep understanding of video data security on multimedia technologies and to provide security for real time video applications using selective encryption for H.264/AVC. Five level of security proposed in this paper based on the content of NAL unit in Baseline Constrain profile of H.264/AVC. The selective encryption in different levels provides encryption of intra-prediction mode, residue data, inter-prediction mode or motion vectors only. Experimental results shown in this paper described that fifth level which is ISMACryp provide higher level of security with more encryption time and the one level provide lower level of security by encrypting only motion vectors with lower encryption time without compromise on compression and quality of visual content. This encryption scheme with compression process with low cost, and keeps the file format unchanged with some direct operations supported. Simulation was being carried out in Matlab.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.