Abstract
This article explores the application of self-supervised contrastive learning in the medical domain, focusing on classification of multi-modality Magnetic Resonance (MR) images. To address the challenges of limited and hard-to-annotate medical data, we introduce multi-modality data augmentation (MDA) and cross-modality group convolution (CGC). In the pre-training phase, we leverage Simple Siamese networks to maximize the similarity between two augmented MR images from a patient, without a handcrafted pretext task. Our approach also combines 3D and 2D group convolution with a channel shuffle operation to efficiently incorporate different modalities of image features. Evaluation on liver MR images from a well-known hospital in Taiwan demonstrates a significant improvement over previous methods. This work contributes to advancing multi-modality contrastive learning, particularly in the context of medical imaging, offering enhanced tools for analyzing complex image data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.