Abstract

Recent computer vision and deep learning breakthroughs have improved road safety by automatically classifying traffic signs. This research uses CNNs to classify traffic signs to improve road safety. Autonomous vehicles and intelligent driver assistance systems require accurate traffic sign detection and classification. Using deep learning, we created a CNN model that can recognize and classify road traffic signs. This research uses a massive dataset of labeled traffic sign photos for training and validation. These CNN algorithms evaluate images and produce real-time predictions to assist drivers and driverless cars in understanding traffic signs. Advanced driver assistance systems, navigation systems, and driverless vehicles can use this technology to give drivers more precise information, improving their decision-making and road safety. Researcher optimized CNN model design, training, and evaluation metrics during development. The model was rigorously tested and validated for robustness and classification accuracy. The research also solves real-world driving obstacles like illumination, weather, and traffic signal obstructions. This research shows deep learning-based traffic sign classification can dramatically improve road safety. This technology can prevent accidents and enhance traffic management by accurately recognizing and interpreting traffic signs. It is also a potential step toward a safer, more efficient transportation system with several automotive and intelligent transportation applications. Road safety is a global issue, and CNN-based traffic sign classification can reduce accidents and improve driving. On filter 3, Convolutional Neural Network training accuracy reached 98.9%, while validation accuracy reached 88.23%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.