Abstract
This paper presents a novel approach for optical character recognition (OCR) on acceleration and to avoid underfitting by text. Previously proposed OCR models typically take much time in the training phase and require large amount of labelled data to avoid underfitting. In contrast, our method does not require such condition. This is a challenging task related to transferring the character sequential relationship from text to OCR. We build a model based on transductive transfer learning to achieve domain adaptation from text to image. We thoroughly evaluate our approach on different datasets, including a general one and a relatively small one. We also compare the performance of our model with the general OCR model on different circumstances. We show that (1) our approach accelerates the training phase 20-30% on time cost; and (2) our approach can avoid underfitting while model is trained on a small dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.