Abstract

Eye diseases that are common and many diseases that result in visual ailments, such as diabetes and vascular disease, can be diagnosed through retinal imaging. The enhancement of retinal images often helps in diagnosing diseases related to retinal organ failure. However, today's image enhancement methods may lead to artificial boundaries, sudden color gradation, and the loss of image details. Therefore, to prevent these side effects, a new method of retinal image enhancement is proposed. In this work, we propose a new method for enhancing the overall contrast of colored retinal images. That is, we propose low-light image enhancement using a new retinex method based on a powerful semidecoupled retinex method. In particular, illumination layer I gradually approximates the S input image according to the file. This leads to a complete Gaussian transformation model, while the R-layer reflectance is estimated jointly by S and intermediary by I to suppress image noise simultaneously during R estimation on the publicly available Messidor database. From our assessment measurements (PSNR and SSIM), we show that this proposed method is effective in comparison with the relevant and recently proposed retinal imaging methods; moreover, the color, which is determined by the data, does not change the image structure. Finally, a technique is presented to improve the pronounced color of a retinal image, which is useful for ophthalmologists to screen for retinal disease more effectively. Moreover, this technique can be used in the development of robotics for imaging tests to search for clinical markers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.