Abstract

The efficiency and applicability of geofoam in reducing the earth pressure on retaining walls were investigated in this study. Finite element (FE) analysis was employed to evaluate the geometric parameters of the geofoam to determine the optimal shape of the geofoam. It was found that the triangular geofoam was the most optimized shape for retaining walls. Furthermore, this study was aimed at revealing the principle of minimizing earth pressures on the retaining wall using geofoam. The soil pressure on the retaining wall was determined according to the geofoam properties, geofoam area, and backfill slope. The FE analysis was verified by comparing the FE analysis results and experimental results for similar retaining walls. In addition, the soil pressure variation throughout the retaining wall was analyzed, and the principle of reducing the soil pressure acting on the retaining wall reinforced with geofoam was investigated. The results showed that when the retaining wall bottom was reinforced using geofoam, a constant reduction in soil pressure was observed, regardless of the geofoam shape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.