Abstract

Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a global threat due to its high mortality in clinical patients. However, the specific mechanisms underlying this increased mortality remain unclear. The objective of this study is to investigate how the development of a resistance phenotype contributes to the significantly higher mortality associated with this pathogen. To achieve this, a collection of isogeneic strains was generated. The clinical carbapenem-susceptible K. pneumoniae (CSKP) strain HKU3 served as the control isolate, while HKU3-KPC was created through conjugation with a blaKPC-2-bearing plasmid and served as clinical CRKP strain. Using a sepsis model, it was demonstrated that both HKU3 and HKU3-KPC exhibited similar levels of virulence. Flow cytometry, RNA-seq, and ELISA analysis were employed to assess immune cell response, M1 macrophage polarization, and cytokine storm induction, revealing that both strains elicited comparable types and levels of these immune responses. Subsequently, meropenem was utilized to treat K. pneumoniae infection, and it was found that meropenem effectively reduced bacterial load, inhibited M1 macrophage polarization, and suppressed serum cytokine production during HKU3 (CSKP) infection. However, these effects were not observed in the case of HKU3-KPC (CRKP) infection. These findings provide evidence that the high mortality associated with CRKP is attributed to its enhanced survival within the host during antibiotic treatment, resulting in a cytokine storm and subsequent host death. The development of an effective therapy for CRKP infections could significantly reduce the mortality caused by this pathogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call