Abstract

To recover from the adverse impacts of COVID-19 on construction and to avoid further losses to the industry in future pandemics, the resilience of construction industry needs to be enhanced against infectious diseases. Currently, there is a gap for modelling frameworks to simulate the spread of infectious diseases in construction projects at micro-level and to test interventions' effectiveness for data-informed decision-making. Here, this gap is addressed by developing a simulation framework using stochastic agent-based modelling, which enables construction researchers and practitioners to simulate and limit the spread of infectious diseases in construction projects. This is specifically important, since the results of a building project case-study reveals that, in comparison to the general population, infectious diseases may spread faster among construction workers and fatalities can be significantly higher. The proposed framework motivates future research on micro-level modelling of infectious diseases and efforts for intervening the spread of diseases in construction projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.