Abstract

Landfill leachate contains substances that can be potentially recovered as valuable resources. In this study, magnesium in a landfill leachate was recovered as struvite with calcium pretreatment; meanwhile, the leachate volume was reduced by using a submerged forward osmosis (FO) process, thereby enabling significant reduction of further treatment footprint and cost. Without pretreatment, calcium exhibited strong competition for phosphate with magnesium. The pretreatment with a Ca2+: CO32– molar ratio of 1:1.4 achieved a relatively low loss rate of Mg2+ (24.1±2.0%) and high Ca2+ removal efficiency (89.5±1.7%). During struvite recovery, 98.6±0.1% of magnesium could be recovered with a significantly lower residual PO43−-P concentration (<25mgL−1) under the condition of (Mg+Caresidual): P molar ratio of 1:1.5 and pH9.5. The obtained struvite had a similar crystal structure and composition (19.3% Mg and 29.8% P) to that of standard struvite. The FO process successfully recovered water from the leachate and reduced its volume by 37%. The configuration of calcium pretreatment - FO - struvite recovery was found to be the optimal arrangement in terms of FO performance. These results have demonstrated the feasibility of magnesium recovery from landfill leachate and the importance of the calcium pretreatment, and will encourage further efforts to assess the value and purity of struvite for commercial use and to develop new methods for resource recovery from leachate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.