Abstract

Thanks to the international GNSS service (IGS), which has provided an open-access real-time service (RTS) since 2013, real-time precise point positioning (RT-PPP) has become a major topic in the time community. Currently, a few scholars have studied RT-PPP time transfer, and the correlation of the receiver clock offsets between adjacent epochs have not been considered. We present a receiver clock offset model that considers the correlation of the receiver clock offsets between adjacent epochs using an a priori value. The clock offset is estimated using a between-epoch constraint model rather than a white noise model. This approach is based on two steps. First, the a priori noise variance is based on the Allan variance of the receiver clock offset derived from GPS PPP solutions with IGS final products. Second, by applying the between-epoch constraint model, the RT-PPP time transfer is achieved. Our numerical analyses clarify how the approach performs for RT-PPP time and frequency transfer. Based on five commonly used RTS products and six IGS stations, two conclusions are obtained straightforwardly. First, all RT-PPP solutions with different real-time products are capable of time transfer. The standard deviation (STD) values of the clock difference between the PPP solutions with respect to the IGS final clock products are less than 0.3 ns. Second, the STD values are reduced significantly by applying our approach. The reduction percent of STD values ranges from 4.0 to 35.5%. Moreover, the largest improvement ratio of frequency stability is 12 as compared to the solution of the white noise model. Note that the receiver clock offset from IGS final clock products is regarded as a reference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call