Abstract

The ability to accurately recognize and count persons is crucial in many real-world applications, including surveillance, security, and crowd management, making it one of computer vision’s most fundamental tasks. You Only Look Once (YOLO) is one of the most effective deep learning models for object identification and counting in recent years. This research seeks to learn more about the YOLOv8 algorithm for precisely counting people in still photos and moving videos. The YOLO method has been at the forefront of computer vision due to its ability to recognize things in real time. People in a crowd typically overlap and block one other, and perspective effects can result in enormous changes in human size, shape, and appearance in the image, all of which make accurate headcounts challenging.The YOLO methodology and its adaptation for population census are the subject of this research. Results from experiments support the usefulness of the proposed approach. Surveillance, crowd control, traffic monitoring, retail analytics, event management, and urban planning are just some of the potential uses highlighted by the findings of this study. Mean Average Precision (MAP) numbers demonstrate that the identification procedure was successful, and the counting process was accurate to within 100%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.