Abstract

In the world of Generative Artificial Intelligence (GenAI) and Large Language Models (LLM), Retrieval-Augmented Generation (RAG) has transformed the way we interact with data. Using RAG, these models can leverage new data contexts to respond to user queries and gain valuable insights. Behind the outstanding capabilities of RAG, a fundamental pre-processing step is present known as chunking. This step plays a crucial role in the effectiveness of these RAG-enhanced models. Chunking involves the breaking down of large text or documents into smaller segments of a fixed size. This allows the retriever to focus on smaller units at a time, making it easier to process and analyse the text. Finding the ideal chunking strategy can be a challenging task. Experimenting and analysis play a decisive role here, as different chunking strategies cater to different use cases. This paper, mainly targeted for an audience that is exploring RAG tuning techniques for higher accuracy, explores the various chunking techniques and their practical implementation using code snippets. After analysing the results for various use cases, the paper also suggests the best use cases for the different chunking strategies. Finally, it concludes by discussing the future potential and extending scope of RAG-enhanced applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.