Abstract

A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. The results suggest design criteria for next generation radiation tolerant structural alloys.

Highlights

  • A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics

  • Understanding the performance of SP-CSAs under high-dose irradiation at elevated temperatures provides a scientific foundation for designing radiation tolerant materials

  • The unique depth distribution of vacancy and interstitial clusters in equiatomic SP-CSAs irradiated at the elevated temperature is associated with a much more significant difference between radiation tolerance among the alloys, that is, a two orders of magnitude enhancement at 773 K versus a factor of 2–4 enhancement at the room temperature[17]

Read more

Summary

Introduction

A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. Wang et al.[12] found that increasing the Cu content (10–50 at.%) in Ni–Cu alloys may effectively suppress irradiation-induced void swelling at the peak swelling temperature[12] Despite these reports, debates on the long-term effectiveness of mechanisms to control or enhance radiation tolerance of single-phase alloys continue. The unique depth distribution of vacancy and interstitial clusters in equiatomic SP-CSAs irradiated at the elevated temperature is associated with a much more significant difference between radiation tolerance among the alloys, that is, a two orders of magnitude enhancement at 773 K versus a factor of 2–4 enhancement at the room temperature[17]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call