Abstract

Informational quantities characterizing the qubit are analyzed in the presence of quantum thermal noise modeling the decoherence process due to interaction with the environment represented as a heat bath at arbitrary temperature. Nontrivial regimes of variation are reported for the informational quantities, which do not necessarily degrade monotonically as the temperature of the thermal noise increases, but on the contrary can experience nonmonotonic variations where higher noise temperatures can prove more favorable. Such effects show that increased quantum decoherence does not necessarily entail poorer informational performance, and they are related to stochastic resonance or noise-enhanced efficiency in information processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.