Abstract
When evaluating an Internet of Things (IoT) platform, it is crucial to consider the quality of service (QoS) as a key criterion. With critical devices relying on IoT technology for both personal and business use, ensuring its security is paramount. However, the vast amount of data generated by IoT devices makes it challenging to manage QoS using conventional techniques, particularly when attempting to extract valuable characteristics from the data. To address this issue, we propose a dynamic-progressive deep reinforcement learning (DPDRL) technique to enhance QoS in IoT. Our approach involves collecting and preprocessing data samples before storing them in the IoT cloud and monitoring user access. We evaluate our framework using metrics such as packet loss, throughput, processing delay, and overall system data rate. Our results show that our developed framework achieved a maximum throughput of 94%, indicating its effectiveness in improving QoS. We believe that our deep learning optimization approach can be further utilized in the future to enhance QoS in IoT platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Periodicals of Engineering and Natural Sciences (PEN)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.