Abstract

In construction projects, conducting dynamic load tests on all piles proves impractical. Selective testing estimates bearing capacity, while the remaining piles rely on penetration depth for management. This approach, however, faces reliability issues due to varying conditions among piles. Technological advancements, such as non-contact hammers and sensors, have enhanced the accuracy of penetration depth measurements during final driving. Nonetheless, relying solely on penetration depth for construction and quality management remains problematic. This study, therefore, focuses on enhancing the use of driving formulas to improve pile quality management, particularly for the widely used pre-stressed high-strength concrete (PHC) piles. To improve pile quality management, existing driving formulas underwent review and refinement. Utilizing 258 dynamic load test data from various sites, the Hiley, Gates, and Danish formulas underwent validation through statistical analysis and graphical comparison. Enhancements to the Gates formula, achieved through curve fitting with actual data and the application of segment-based coefficients, demonstrated increased accuracy in bearing capacity estimation. These improvements offer a more reliable approach to pile quality management in construction projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.