Abstract

The clinical use of recombinant interferons (rIFNs) is limited by higher purification cost and quick clearance from circulation. Elastin-like polypeptides (ELPs) are a novel tag for recombinant protein purification and half-life extension. In this study, we evaluated the feasibility of ELP fusion for simple purification and half-life extension of recombinant porcine IFNs (rPoIFNs). After construction of five different fusion expression vectors, we optimized the conditions for soluble protein expression and purification. SDS-PAGE analysis showed that, unlike PoIFNα-His and PoIFNγ-His, PoIFNα-ELP, ELP-PoIFNα and PoIFNαγ-ELP were expressed mainly as soluble proteins at 20 ℃. The optimal conditions for the inverse transition cycling (ITC) of three ELP fusion proteins were 2 M NaCl at 28 ℃. After two rounds of ITC, the three ELP fusion proteins were purified to more than 90% purities, which were comparable to that of affinity-purified PoIFNα-His and PoIFNγ-His. Cytopathic effect inhibition assay showed that the five rPoIFNs had potent but different antiviral activities against two different viruses on two different cell types. The plasma solubility assay showed that the three ELP-fused rPoIFNs remained as soluble proteins under the physical conditions. The plasma stability of three ELP-fused rPoIFNs was significantly improved in comparison with that of PoIFN-α. These data suggest that ELP fusion is a feasible strategy to enhance purification and plasma stability of rPoIFNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.