Abstract

Evaluating the rehabilitation status of individuals with serious mental illnesses (SMI) necessitates a comprehensive analysis of multimodal data, including unstructured text records and structured diagnostic data. However, progress in the effective assessment of rehabilitation status remains limited. Our study develops a deep learning model integrating Bidirectional Encoder Representations from Transformers (BERT) and TabNet through a late fusion strategy to enhance rehabilitation prediction, including referral risk, dangerous behaviors, self-awareness, and medication adherence, in patients with SMI. BERT processes unstructured textual data, such as doctor's notes, whereas TabNet manages structured diagnostic information. The model's interpretability function serves to assist healthcare professionals in understanding the model's predictive decisions, improving patient care. Our model exhibited excellent predictive performance for all four tasks, with an accuracy exceeding 0.78 and an area under the curve of 0.70. In addition, a series of tests proved the model's robustness, fairness, and interpretability. This study combines multimodal and multitask learning strategies into a model and applies it to rehabilitation assessment tasks, offering a promising new tool that can be seamlessly integrated with the clinical workflow to support the provision of optimized patient care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call