Abstract

Big Data platforms recently employ resource management systems, such as YARN, Mesos, and Google Borg, to provision computational resources. These systems adopt containerization to share the computing resources in a multi-tenant setting with low performance overhead and interference. However, it may be observed that tenants often interfere with each other on the underlying Big Data File Systems (BDFS), e.g., Hadoop File System, which have been widely deployed as a persistent layer in current data centers. A solution with systematic generality is to containerize BDFS itself to isolate and allocate its IO sources to multiple tenants. To this end, we conduct analysis on the ineffectiveness of proportionally sharing BDFS IO resource via containerization. This ineffectiveness is due to the scheduler of containerization in “pseudo-starvation” status, in which most of IO requests are backlogged in BDFS rather than in containerization scheduler. Without enough backlogged IO requests, existing schedulers might have to maximize device utilization rather than enforce proportional sharing policy. To resolve this ineffectiveness issue, we develop a cross-layer system called BDFS-Container , which containerizes BDFS at the Linux block IO level. Central to BDFS-Container, we propose and design a proactive IOPS throttling-based mechanism named IOPS Regulator , which achieves a trade-off between maximizing IO utilization and accurately proportional IO sharing. The evaluation results show that our method can improve proportionally sharing BDFS IO resources by 74.4 percent on average.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.