Abstract

Fungal mash derived from Aspergillus spp. is a green enzymatic additive for food waste (FW) valorization. In this study, the production of volatile fatty acids (VFAs) and the proportion of propionic acid (PA) in VFAs were increased by utilizing a complex enzyme (CE) obtained from Aspergillus oryzae. Results showed that CE addition significantly promoted SCOD concentration in the hydrolysis at a wide pH range from 4 to 9. In contrast, the production of VFAs was influenced by pH, and the highest yields of VFAs and PA were found at pH 7. At the CE dosage of 0.2 g/g VSS, the concentration of VFAs in the FW fermentation liquid reached 38.1 g COD/L with the PA proportion up to 42.7%, which increased by 107.9% and 63.7%, respectively, relative to that in the zero-dosage group. With CE continuing to be added, the C/N ratio declined, and the primary metabolic pathway was converted from acetic acid-type to PA-type. Further investigation of the dominant microbial communities and their metabolic capacities showed that the acrylate-mediated pathway was the potential metabolic reaction in PA-type fermentation. These results indicated that CE pretreatment was a feasible strategy to enhance the PA-rich fermentation of FW under neutral pH conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call