Abstract

This study investigated the potential of producing and upgrading bio-oil from plastic waste through a catalytic pyrolysis process. Plastic waste samples composed of polystyrene, polyethylene, and low-density polyethylene, shredded to sizes of 1.5–2.5 mm and blended in a ratio of 50/25/25, respectively, were pyrolyzed in a fluidized bed reactor at optimal conditions of 560–650 °C, a heating rate of 15 °C/min, and N2 gas flow rate of 100 ml/min in the presence of zeolite catalysts. The produced bio-oil was treated with fossil diesel, calcium hydroxide, and sodium sulfate to enhance its properties. The results showed that bio-oil production was increased to 65 wt. %, while char was reduced to 3.5 wt. %. Treatment with 20 wt. % diesel reduced bio-oil kinematic viscosity by 58% and improved stability from 20% to 50%. The addition of 16 g calcium hydroxide reduced the bio-oil acidity by 51% from a pH of 3.2–4.85. Furthermore, the bio-oil moisture content was reduced from 10 to 5.2 wt. % through the addition of 10 g of sodium sulfate, while the lower heating value was improved to 39.0 MJ/kg. Therefore, the catalytic pyrolysis of plastic waste in a fluidized bed reactor, and the various treatments performed on the generated bio-oil proved to be an effective technique to enhance the economic value of plastic waste and its environmental management at large.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call