Abstract

AbstractIntegrating commercial software packages into undergraduate engineering courses is seen as a beneficial pedagogical approach for students in two ways. First, it facilitates an active learning environment; second, it gives students access to modern technical tools. Here, we present the key outcomes from the incorporation of software packages in two chemical engineering courses: a commercial hydraulic modelling software (PIPE-FLO; Engineered Software) was used in a Fluid Mechanics course, and a freely-available water treatment design software (WAVE; DuPont) was used in a Separations course. For each software package, a set of self-guided tutorials were created with step-by-step instructions (including screenshots/diagrams) and both closed- and open-ended practice problems that were designed to improve the learning outcomes. Also, a set of supplementary workshops were given to demonstrate the practicality of the software. This approach was expected to promote a greater understanding of course material by creating a low-risk environment where the students can explore and expand their knowledge. Over the past five years of integrating PIPE-FLO into the Fluid Mechanics course, the responses from the students have been overwhelmingly positive. Our approach has led to the successful internalization of course content, as evidenced by accreditation metrics. We anticipate that continually refining these course materials—especially with regards to the WAVE software—will see students develop a greater understanding of the course content.KeywordsSoftware packageFluid mechanicsSeparations scienceEngineering education

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call