Abstract

Multicomponent metal-organic frameworks (MOFs) promise the precise placement of synergistic functional groups with atomic-level precision, capable of promoting fascinating developments in basic sciences and applications. However, the complexity of multicomponent systemsposesa challengetotheir structural design and synthesis. Herein, we show that linkers of low symmetry can bring new opportunities to the construction of multicomponent MOFs. A carbazole-tetracarboxylate linker of C s point group symmetry was designed and combined with an 8-connected Zr6 cluster to generate a low-symmetry MOF, PCN-609. PCN-609 contains coordinatively unsaturated Zr sites arranged within a lattice with three crystallographically distinct pockets, which can accommodate linear linkers ofdifferent lengths. Sequential linker installation was carried out to postsynthetically insert three linear linkers into PCN-609, giving rise to a quinary MOF. Functionalization of each linker from the quinary MOF system creates multivariate pore environments with unprecedented complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.