Abstract

The application of lithium-sulfur (Li-S) batteries is severely hampered by the shuttle effect and sluggish redox kinetics. Herein, amorphous cobalt phosphide grown on a reduced graphene oxide-multiwalled carbon nanotube (rGO-CNT-CoP(A)) is designed as the sulfur host to conquer the above bottlenecks. The differences between amorphous cobalt phosphide (CoP) and crystalline CoP on the surface adsorption as well as conversion of lithium polysulfides (LiPSs) are investigated by systematical experiments and density-functional theory (DFT) calculations. Specifically, the amorphous CoP not only strengthens the chemical adsorption to LiPSs but also greatly accelerates liquid-phase conversions of LiPSs as well as the nucleation and growth of Li2S. DFT calculation reveals that the amorphous CoP possesses higher binding energies and lower diffusion energy barriers for LiPSs. In addition, the amorphous CoP features reduced energy gap and the increased electronic concentrations of adsorbed LiPSs near Fermi level. These characteristics contribute to the enhanced chemisorption ability and the accelerated redox kinetics. Simultaneously, the prepared S/rGO-CNT-CoP(A) electrode delivers an impressive initial capacity of 872 mAh g-1 at 2 C and 617 mAh g-1 can be obtained after 200 cycles, exhibiting excellent cycling stability. Especially, it achieves outstanding electrochemical performance even under high sulfur loading (5.3 mg cm-2) and lean electrolyte (E/S = 7 μLE mg-1S) conditions. This work exploits the application potential for amorphous materials and contributes to the development of highly efficient Li-S batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call