Abstract

Chemical recycling of plastics is a promising approach for effectively depolymerizing plastic waste into its constituent monomers, thereby contributing to the realization of a sustainable circular economy. Glycolysis, which converts polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET), has emerged as a cost-effective and commercially viable chemical recycling process. However, glycolysis requires long reaction times and high energy consumption, limiting its industrialization. In this study, we develop an energy-efficient microwave-assisted deep eutectic solvent-catalyzed glycolysis method to degrade PET effectively and rapidly, resulting in a high BHET yield. This combined approach enables the quantitative degradation of PET within 9 min, achieving a high BHET yield of approximately 99% under optimal reaction conditions. Furthermore, the proposed approach has a low specific energy consumption (45 kJ/g) and minimizes waste generation. The thermal behavior of PET and its degradation mechanism are systematically investigated using scanning electron microscopy and density functional theory-based calculations. The results obtained suggest that the proposed straightforward, swift, and energy-efficient strategy has the potential to offer a sustainable solution to plastic waste management challenges and expedite the industrialization of chemical recycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.