Abstract

At present more than 20% of all the irrigated land in the world is estimated as affected by salinity and this trend is increasing with the rapid climate changes as well as the excess use of irrigation water. Salt stress is one of the most devastating abiotic stresses which severely affects the agricultural productivity in various ways. High concentration of salt in the soil or in the irrigation water can have a overwhelming effect on plant metabolism, disrupting cellular homeostasis and uncoupling major physiological and biochemical processes. Salinity cause both osmotic stress and ionic toxicity which hamper the plant productivity by inhibiting or altering the plant growth, dry matter partitioning, seed germination, photosynthesis and yield. Considering the devastating effect of salt stress on plants, one of the important tasks for plant biologists is to explore the approaches that are able to develop salt tolerance in crop plants. In fact, salt tolerance is a multigenic trait which is governed by various morphological and physiological factors. Thus omics approaches therefore, come in forefront to develop salt tolerance as a part of different strategies of conventional plant breeding. Transcriptomics, proteomics, metabolomics, ionomics and micromics together have been a bloom in revealing plant stress responses and the mechanisms that underlie these responses. These techniques have been playing important part in discovering new genes, proteins and secondary plant metabolites those are responsible for plants adaptation to stress. In this review, we have focused on the causes and effects of salinity on crop plants and possible mechanisms of salt tolerance including the possible use of omics in conferring salt tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call