Abstract

Perovskite solar cells have developed rapidly in recent years to almost rival silicon cells. To extend the photoresponse in the near-infrared region, integrated perovskite/organic solar cells (IPOSCs) have been developed. Typically, the organic bulk heterojunction (BHJ) in IPOSCs is built by one-step coating of a mixed solution of a donor and an acceptor. Here, we prepare the BHJ by layer-by-layer (LBL) processing. Compared to the traditional one-step coated IPOSCs (TOS device), the LBL-processed device (LBL device) exhibits a distinctly improved short-circuit current density (JSC) and power conversion efficiency. The TOS device shows a high photoresponse from about 400 to 900 nm, while the LBL device shows a high photoresponse extending to about 950 nm. Further research indicates that the extending photoresponse of the LBL-device is caused by the redshift of absorption of the organic BHJ. Meanwhile, the LBL-processed BHJ exhibits slightly improved carrier extraction and recombination. The introduction of LBL processing provides an approach to broaden the optical absorption range and photoresponse of IPOSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call