Abstract
Photoelectrochemical water splitting provides a promising strategy for converting solar energy into chemical fuels and has attracted extensive interest. Herein, Bi2MoO6 nanopillars with large surface areas were fabricated on an ITO-coated glass substrate and their photoelectrochemical properties are enhanced through appropriate manipulation of ferroelectric polarization. The Bi2MoO6 photoanode with polarization orientation toward ITO shows an enhanced photocurrent density of 250 μA cm-2 at 1.23 V vs. reversible hydrogen electrode, which is 28% higher than that of pristine Bi2MoO6 nanopillars without macroscopic polarization. The corresponding depolarization electric field benefits the separation of light-excited electron-hole pairs, thus minimizing the recombination of charge carriers and further enhancing the photocurrent current density. Our work offers a new strategy of Bi2MoO6-based photoelectrochemical devices with great potential of application in the conversion of solar energy into chemical fuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.