Abstract

This study focuses on the photocatalytic degradation of quinoline, a recalcitrant heterocyclic nitrogenous aromatic organic compound, using the mixed oxide ZnO–TiO2 photo-catalyst. Photo-catalysts were synthesized by the solid-state reaction method at different calcination temperatures of 400 °C, 600 °C, and 800 °C. Different analytical methods, including Field emission scanning electron microscope, Brunauer-Emmett-Teller surface area, X-ray diffraction, UV–vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy analysis were used for the catalyst characterization. The highest pore surface area of 57.9 m2g−1 was obtained for the photo-catalyst calcined at 400 °C. The effects of calcination temperature, solution pH, initial concentration, catalyst dose as well as irradiation time were studied. At the optimum condition, i.e., calcination temperature of 400 °C, pH ≈8 and catalyst dose of 2.5 gL−1, maximum quinoline degradation and total organic carbon (TOC) removal efficiency of ≈92% and ≈78% were obtained after 240 min for initial quinoline amount of 50 mgL−1. The 1st, 2nd, and nth-order kinetic models were applied to analyze the quinoline degradation rate. The photocatalytic mechanism was studied by drawing energy level diagram with the help of the band-gap structures of the ZnO and TiO2, potential of the free radicals like OH and O2 and HOMO-LUMO energy gap of the quinoline molecule. The proposed pathways of quinoline mineralization were suggested on the basis of the identified intermediates by the gas chromatograph-mass spectrometer analysis and scavenger study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call